# High Flow Device Noise Test Summary







Purpose: The purpose of this test is to measure sound levels at various flows including maximum and minimum flows for the MaxFLO<sub>2</sub> High Flow, High Flow Microblender, and MaxVenturi.

## **MaxFL02 High Flow Results**

| Flow                                                                           | <b>Ambient Noise</b> | 10 LPM | 30 LPM | 50 LPM | Maximum Flush |
|--------------------------------------------------------------------------------|----------------------|--------|--------|--------|---------------|
| MaxFLO <sub>2</sub> decibel levels with tube parallel to the sound level meter | 50.5                 | 50.7   | 57.9   | 67.7   | 77.6          |
| MaxFLO <sub>2</sub> with the tube perpendicular to the sound level meter       | _                    | 50.6   | 58.7   | 69.4   | 78.3          |
| MaxFLO <sub>2</sub> with nasal cannula                                         | _                    | 50.5   | 51.8   | 58.6   | 65.5          |
| Average decibel levels (all variations)                                        |                      | 50.6   | 56.1   | 65.2   | 73.8          |

## **High Flow Blender Results**

| Flow                                                                            | <b>Ambient Noise</b> | 10 LPM | 35 LPM | 70 LPM | Maximum Flush |
|---------------------------------------------------------------------------------|----------------------|--------|--------|--------|---------------|
| High Flow Blender with the tube parallel to the sound level meter               | 50.5                 | 70.7   | 79.2   | 81.9   | 80.2          |
| High Flow Blender with the tube perpendicular to the sound level meter          | _                    | 71.2   | 81.6   | 82.4   | 81.9          |
| High Flow Blender with Nasal Cannula                                            | _                    | 56.8   | 64.4   | 68.6   | 69.4          |
| High Flow Blender with adapter. Tube parallel to the sound level meter          |                      | 67.9   | 84.8   | 82.7   | 82.5          |
| High Flow Blender with the adapter. Tube perpendicualr to the sound level meter | _                    | 69.0   | 87.4   | 85.3   | 84.4          |
| High Flow Blender with Nasal Cannula                                            | _                    | 56.2   | 70.4   | 69.3   | 72.8          |
| Average decibel levels (all variations)                                         |                      | 65.3   | 78.0   | 78.4   | 78.5          |

### **MaxVenturi Results**

| Flow                                                                    | <b>Ambient Noise</b> | 20 LPM | 35 LPM | 50 LPM | Maximum Flush |
|-------------------------------------------------------------------------|----------------------|--------|--------|--------|---------------|
| MaxVenturi-Tube-Filter with tube parallel to the sound level meter      | 50.2                 | 52.2   | 57.3   | 63.5   | 64.9          |
| MaxVenturi-Tube-Filter with tube perpendicular to the sound level meter | _                    | 52.4   | 57.6   | 53.8   | 65.7          |
| MaxVenturi-Tube-Filter & Nasal Cannula                                  | _                    | 51.6   | 57.6   | 53.8   | 65.7          |
| MaxVenturi-Filter-Tube with tube parallel to the sound level meter      | _                    | 51.8   | 56.8   | 62.7   | 64.4          |
| MaxVenturi-Filter-Tube with tube perpendicular to the sound level meter | _                    | 51.9   | 57.4   | 63.4   | 65.7          |
| MaxVenturi-FIlter-Tube with Nasal<br>Cannula                            | _                    | 50.7   | 53.3   | 57.3   | 58.4          |
| Average decibel rating (all variations)                                 |                      | 51.8   | 56.7   | 59.1   | 64.1          |

### **Conclusions**

The sound level study shows that a high flow blender is significantly louder than a MaxVenturi or MaxFLO<sub>2</sub>. For example, at 50 LPM, a MaxVenturi produces about 60 dB of sound, while a high flow MaxFLO2 will produce 65 dB (3x louder, and a high flow blender 80 dB of sound (100x louder). A high flow blender reaches maximum loudness at approximately 30 LPM while the MaxVenturi and MaxFLO2 will slowly increase in loudness with increased flow rate. In all instances attaching a nasal cannula to the end of a patient circuit will decrease the noise level by 10 dB (10x). This study has shown that sound travels readily with gas flow typically along a patient circuit. Modifying a MaxVenturi to suppress sound accomplilshes little compared to the noise damepning capabilities of a nasal cannula. In conclusion, both the MaxVenturi and MaxFLO2 were significanlty quieter than a high flow blender with the Venturi being the quietest of all. However, a MaxFLO2 has a much higher flow capability than a Venturi and is not susceptible to back-pressure.



